135 research outputs found

    RadVel: The Radial Velocity Modeling Toolkit

    Get PDF
    RadVel is an open source Python package for modeling Keplerian orbits in radial velocity (RV) time series. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented realtime MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.Comment: prepared for resubmission to PAS

    Population-level Eccentricity Distributions of Imaged Exoplanets and Brown Dwarf Companions: Dynamical Evidence for Distinct Formation Channels

    Get PDF
    The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100 au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e = 0–1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e ≈ 0.6–0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1–200 au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR 8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age

    Population-level Eccentricity Distributions of Imaged Exoplanets and Brown Dwarf Companions: Dynamical Evidence for Distinct Formation Channels

    Get PDF
    The orbital eccentricities of directly imaged exoplanets and brown dwarf companions provide clues about their formation and dynamical histories. We combine new high-contrast imaging observations of substellar companions obtained primarily with Keck/NIRC2 together with astrometry from the literature to test for differences in the population-level eccentricity distributions of 27 long-period giant planets and brown dwarf companions between 5 and 100 au using hierarchical Bayesian modeling. Orbit fits are performed in a uniform manner for companions with short orbital arcs; this typically results in broad constraints for individual eccentricity distributions, but together as an ensemble, these systems provide valuable insight into their collective underlying orbital patterns. The shape of the eccentricity distribution function for our full sample of substellar companions is approximately flat from e = 0–1. When subdivided by companion mass and mass ratio, the underlying distributions for giant planets and brown dwarfs show significant differences. Low mass ratio companions preferentially have low eccentricities, similar to the orbital properties of warm Jupiters found with radial velocities and transits. We interpret this as evidence for in situ formation on largely undisturbed orbits within massive extended disks. Brown dwarf companions exhibit a broad peak at e ≈ 0.6–0.9 with evidence for a dependence on orbital period. This closely resembles the orbital properties and period-eccentricity trends of wide (1–200 au) stellar binaries, suggesting that brown dwarfs in this separation range predominantly form in a similar fashion. We also report evidence that the "eccentricity dichotomy" observed at small separations extends to planets on wide orbits: the mean eccentricity for the multi-planet system HR 8799 is lower than for systems with single planets. In the future, larger samples and continued astrometric orbit monitoring will help establish whether these eccentricity distributions correlate with other parameters such as stellar host mass, multiplicity, and age

    Obliquity Constraints on an Extrasolar Planetary-Mass Companion

    Get PDF
    We place the first constraints on the obliquity of a planetary-mass companion outside of the solar system. Our target is the directly imaged system 2MASS J01225093–2439505 (2M0122), which consists of a 120 Myr 0.4 M⊙ star hosting a 12–27 M_J companion at 50 au. We constrain all three of the system's angular-momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (v sin i) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from Hubble Space Telescope to obtain spin-axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122b's orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin–orbit resonances, and Kozai–Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk—the scenario favored for brown dwarf companions to stars—appears promising

    Dynamical orbital evolution scenarios of the wide-orbit eccentric planet HR 5183b

    Full text link
    The recently-discovered giant exoplanet HR5183b exists on a wide, highly-eccentric orbit (a=18a=18\,au, e=0.84e=0.84). Its host star possesses a common proper-motion companion which is likely on a bound orbit. In this paper, we explore scenarios for the excitation of the eccentricity of the planet in binary systems such as this, considering planet-planet scattering, Lidov-Kozai cycles from the binary acting on a single-planet system, or Lidov-Kozai cycles acting on a two-planet system that also undergoes scattering. Planet-planet scattering, in the absence of a binary companion, has a 2.87.2%2.8-7.2\% probability of pumping eccentricities to the observed values in our simulations, depending on the relative masses of the two planets. Lidov-Kozai cycles from the binary acting on an initially circular orbit can excite eccentricities to the observed value, but require very specific orbital configurations for the binary and overall there is a low probability of catching the orbit at the high observed high eccentricity (0.6%0.6\%). The best case is provided by planet-planet scattering in the presence of a binary companion: here, the scattering provides the surviving planet with an initial eccentricity boost that is subsequently further increased by Kozai cycles from the binary. We find a success rate of 14.5%14.5\% for currently observing e0.84e\ge0.84 in this set-up. The single-planet plus binary and two-planet plus binary cases are potentially distinguishable if the mutual inclination of the binary and the planet can be measured, as the latter permits a broader range of mutual inclinations. The combination of scattering and Lidov-Kozai forcing may also be at work in other wide-orbit eccentric giant planets, which have a high rate of stellar binary companions.Comment: Accepted to MNRAS. A simple board game based on the paper may be found at http://filestore.astro.lu.se/research/alex/HR5183b.pd

    As chapeuzinhos vermelhos: uma análise histórica e intertextual da representação do feminino na literatura infantil

    Get PDF
    Investiga narrativas pertencentes ao gênero Contos de Fadas através da análise de textos. De que forma temáticas do contexto social são representadas pelos autores em suas obras e qual papel desse conteúdo na formação identitária do público infantojuvenil dentro do contexto escolar. Para isso será analisada a personagem Chapeuzinho Vermelho através das obras de Perrault, Grimm, Dahl e Pennart

    Signs of Similar Stellar Obliquity Distributions for Hot and Warm Jupiters Orbiting Cool Stars

    Full text link
    Transiting giant planets provide a natural opportunity to examine stellar obliquities, which offer clues about the origin and dynamical histories of close-in planets. Hot Jupiters orbiting Sun-like stars show a tendency for obliquity alignment, which suggests that obliquities are rarely excited or that tidal realignment is common. However, the stellar obliquity distribution is less clear for giant planets at wider separations where realignment mechanisms are not expected to operate. In this work, we uniformly derive line-of-sight inclinations for 47 cool stars (TeffT_\mathrm{eff} << 6200 K) harboring transiting hot and warm giant planets by combining rotation periods, stellar radii, and vsiniv \sin i measurements. Among the systems that show signs of spin-orbit misalignment in our sample, three are identified as being misaligned here for the first time. Of particular interest are Kepler-1654, one of the longest-period (1047 d; 2.0 AU) giant planets in a misaligned system, and Kepler-30, a multi-planet misaligned system. By comparing the reconstructed underlying inclination distributions, we find that the inferred minimum misalignment distributions of hot Jupiters spanning a/Ra/R_{*} = 3-20 (\approx 0.01-0.1 AU) and warm Jupiters spanning a/Ra/R_{*} = 20-400 (\approx 0.1-1.9 AU) are in good agreement. With 90%\% confidence, at least 247+9%^{+9}_{-7}\% of warm Jupiters and 145+7%^{+7}_{-5}\% of hot Jupiters around cool stars are misaligned by at least 10^\circ. Most stars harboring warm Jupiters are therefore consistent with spin-orbit alignment. The similarity of hot and warm Jupiter misalignment rates suggests that either the occasional misalignments are primordial and originate in misaligned disks, or the same underlying processes that create misaligned hot Jupiters also lead to misaligned warm Jupiters.Comment: AJ, accepte

    No difference in orbital parameters of RV-detected giant planets between 0.1 and 5 au in single vs multi-stellar systems

    Get PDF
    Our Keck/NIRC2 imaging survey searches for stellar companions around 144 systems with radial velocity (RV) detected giant planets to determine whether stellar binaries influence the planets' orbital parameters. This survey, the largest of its kind to date, finds eight confirmed binary systems and three confirmed triple systems. These include three new multi-stellar systems (HD 30856, HD 86081, and HD 207832) and three multi-stellar systems with newly confirmed common proper motion (HD 43691, HD 116029, and HD 164509). We combine these systems with seven RV planet-hosting multi-stellar systems from the literature in order to test for differences in the properties of planets with semimajor axes ranging between 0.1-5 au in single vs multi-stellar systems. We find no evidence that the presence or absence of stellar companions alters the distribution of planet properties in these systems. Although the observed stellar companions might influence the orbits of more distant planetary companions in these systems, our RV observations currently provide only weak constraints on the masses and orbital properties of planets beyond 5 au. In order to aid future efforts to characterize long period RV companions in these systems, we publish our contrast curves for all 144 targets. Using four years of astrometry for six hierarchical triple star systems hosting giant planets, we fit the orbits of the stellar companions in order to characterize the orbital architecture in these systems. We find that the orbital plane of the secondary and tertiary companions are inconsistent with an edge-on orbit in four out of six cases.Comment: 34 pages, 10 figures, 16 tables, including 4 tables in machine readable format and 7 tables with online supplemental dat

    The Impact of Bayesian Hyperpriors on the Population-Level Eccentricity Distribution of Imaged Planets

    Full text link
    Orbital eccentricities directly trace the formation mechanisms and dynamical histories of substellar companions. Here, we study the effect of hyperpriors on the population-level eccentricity distributions inferred for the sample of directly imaged substellar companions (brown dwarfs and cold Jupiters) from hierarchical Bayesian modeling (HBM). We find that the choice of hyperprior can have a significant impact on the population-level eccentricity distribution inferred for imaged companions, an effect that becomes more important as the sample size and orbital coverage decrease to values that mirror the existing sample. We reanalyse the current observational sample of imaged giant planets in the 5-100 AU range from Bowler et al. (2020) and find that the underlying eccentricity distribution implied by the imaged planet sample is broadly consistent with the eccentricity distribution for close-in exoplanets detected using radial velocities. Furthermore, our analysis supports the conclusion from that study that long-period giant planets and brown dwarf eccentricity distributions differ by showing that it is robust to the choice of hyperprior. We release our HBM and forward modeling code in an open-source Python package, ePop!, and make it freely available to the community.Comment: 18 pages, 11 figures. Accepted for publication in The Astronomical Journa
    corecore